Visual of a Line in 3D

Direction \& Position Vectors:
$\mathbf{v}=\langle a, b, c\rangle=$ any vector parallel to the line
$r_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ vector pointing from the origin to some particular point (x_{0}, y_{0}, z_{0}) on the line.
$\mathbf{a}=\mathbf{t v}=$ a scale multiple of \mathbf{v}.

If $\langle x, y, z\rangle=r_{0}+t v$, then (x, y, z) is a point on the line. We say a vector form of the line is:

$$
\mathbf{r}=\mathbf{r}_{0}+\mathrm{tv}
$$

Basic Example - Given Two Points:
Find an equation for the line through the points $P(1,0,2)$ and $Q(-1,2,1)$.

General Line Facts

1. Two lines are parallel if their direction vectors are parallel.
2. Two lines intersect if they have an (x, y, z) point in common (use different different parameters!)
Note: The acute angle of intersection would be the angle between the direction vectors.
3. Two lines are skew if they don't intersect and aren't parallel.

Visual of a Plane in 3D

Normal \& Position Vectors:

$\mathbf{n}=\langle a, b, c\rangle=$ any vector orthogonal to plane $r_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ vector pointing from the origin to some particular point $\left(x_{0}, y_{0}, z_{0}\right)$ on the plane.
Let (x, y, z) be some other point on the plane and consider
$\left.<\mathrm{x}-\mathrm{x}_{0}, \mathrm{y}-\mathrm{y}_{0}, \mathrm{z}-\mathrm{z}_{0}\right\rangle$ (denoted by $\mathrm{r}-\mathrm{r}_{0}$)

Key Observation: \mathbf{n} is orthogonal to $\mathbf{r}-\mathbf{r}_{0}$. Thus, we get the vector form of the plane:

$$
n \cdot\left(r-r_{0}\right)=0
$$

Basic Example - Given Three Points:
Find the equation for the plane through the points $P(0,1,0), Q(3,1,4)$, and $R(-1,0,0)$

General Plane Facts

1. Two planes are parallel if their normal vectors are parallel.
2. If two planes are not parallel, then they must intersect to form a line.

2a. The acute angle of intersection is the angle between their normal vectors.

2 b . The planes are orthogonal if their normal vectors are orthogonal.

Side comment:
If you want the distance between two parallel planes, then
(a) Find any point on the first plane ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and any point on the second plane ($\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$).
(b) Write down the vector

$$
\mathbf{u}=\left\langle\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1}\right\rangle
$$

(c) Project \mathbf{u} onto one of the normal vectors \mathbf{n} $\left|\operatorname{comp}_{\mathrm{n}}(\mathbf{u})\right|=$ distance between planes

